Vision-Based Hierarchical Fuzzy Controller and Real Time Results for a Wheeled Autonomous Robot

نویسندگان

  • Pourya Shahmaleki
  • Mojtaba Mahzoon
  • Alireza Kazemi
  • Mohammad Basiri
چکیده

One of the most important problems in robotics is motion planning problem, which its basic controversy is to plan a collision-free path between initial and target configurations for a robot. In the framework of motion planning for nonholonomic systems, the wheeled robots have attracted a significant amount of interest. The path planner of a wheeled autonomous robot has to meet nonholonomic constraints and then the movement direction must always be tangent to its trajectory (Paromtichk et. al., 1998; Latombe, 1991, Murray & Sastry, 1993; Lamiraux & Laumond, 2001; Scheuer & Fraichard, 1996). If no obstacles exist on path of the robot, then the robot task is finding the shortest path connecting two given initial and final configurations. The shortest paths for a car like vehicle consist of a finite sequence of two elementary components: arcs of circle (with minimum turning radii) and straight line segments. In any case, the problem is that the curvature is discontinuous between two elementary components, so that these shortest paths cannot be followed precisely without stopping at each discontinuity point to reorient the front wheels. To avoid these stops, several authors have proposed continuous-curvature path planners using differential geometric methods. These planners generate clothoids, cubic spirals, ┚-splines, quintic polynomials, etc., which are then followed by using a path-tracking technique based on, for example, pure-pursuit or predictive control methods (Lamiraux & Laumond, 2001; Scheuer & Fraichard, 1996). Stabilization issues of path-tracking methods for car-like vehicles using the Lyapunov method have been reported in (Walsh et. al., 1994; Tayebi & Rachid, 1996). One of the key technologies of future automobiles is the parking assist or automatic parking control. Control problems of a car-like vehicle are not easy because of the nonholonomic velocity constraints. The truck backer-upper control is a typical nonlinear control problem that cannot be solved by the conventional control techniques. The goal of controller is to back up a truck to a loading dock from any initial position as quickly and precisely as possible. Backing a truck to the loading dock or parking spot is a difficult task even for a skilled truck driver. The research in parking problem is derived from the study of general motion planning for autonomous robots. In the past few decades, many algorithms have been developed for robot parking planning (Jiang & Seneviratne, 1999; Gomez-Bravo et. al., 2001; Cuesta et. al., 2004; Reeds & Shepp, 1990). The attempts to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Motion Control for Wheeled Mobile Robots in Real-Time

Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Hierarchical Fuzzy State Controller for Robot Vision

Vision algorithms for robot control are usually context dependent. A state based vision controller can provide both the computational and temporal context for the algorithm. A hierarchical layering enables one or more subobjectives to be selected. To mimic human behaviour, it is argued that using fuzzy logic is better able to manage the subjective data obtained from images. Fuzzy reasoning is u...

متن کامل

Robot Motion Vision Part II: Implementation

The idea of Fixation introduced a direct method for general recovery of shape and motion from images without using either feature correspondence or optical flow [1,2]. There are some parameters which have important effects on the performance of fixation method. However, the theory of fixation does not say anything about the autonomous and correct choice of those parameters. This paper presents ...

متن کامل

Mobile robot wall-following control using a behavior-based fuzzy controller in unknown environments

This paper addresses a behavior-based fuzzy controller (BFC) for mobile robot wall-following control.The wall-following task is usually used to explore an unknown environment.The proposed BFC consists of three sub-fuzzy controllers, including Straight-based Fuzzy Controller (SFC),Left-based Fuzzy Controller (LFC), and Right-based Fuzzy Controller (RFC).The proposed wall-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012